Implications of polymorphic cytochrome p450-dependent drug metabolism for drug development.
نویسنده
چکیده
The main part of human cytochrome P450-dependent drug metabolism is carried out by polymorphic enzymes that can cause abolished, quantitatively or qualitatively altered, or enhanced drug metabolism. Ultrarapid metabolism is due to stable duplication, multiduplication, or amplification of active genes. Several examples exist where subjects carrying certain alleles suffer from a lack of drug efficacy due to ultrarapid metabolism or, alternatively, adverse effects from the drug treatment due to the presence of defective alleles. The polymorphic enzymes create a problem for the drug industry because of the extensive interindividual variability in the metabolism of candidate drugs that are substrates for such enzymes. The new area for lead generation has a more preclinical emphasis and involves combinatorial chemistry in conjunction with high-throughput-based analysis of thousands of substances with respect to their absorption, metabolism, and excretion characteristics. The outcome is that companies drop substrates for polymorphic enzymes at an early stage in development, which will of course create fewer problems with polymorphic enzymes in the future. The risk is that very valuable candidates, which cannot be replaced easily, never come out on the market. The alternative, however, of using the patient's genotype as a basis for individualized drug treatment constitutes, in light of rapid methodological developments, a very feasible approach to safer and more efficient drug therapies.
منابع مشابه
P-192: Association of Cytochrome P450 2D6 (CYP2D6) Gene Polymorphism with Clomiphene Citrate Treatment in Iranian Infertile Women with Polycystic Ovary Syndrome
Background: Clomiphene Citrate (CC) is the most frequently administered drug for the treatment of female infertility [e.g. polycystic ovary syndrome (PCOS)]; which aims at restoring ovulation. Clomiphene is metabolized by CYP2D6, an important enzyme responsible for the metabolism of approximately 25% of clinically used drugs. CYP2D6 is very polymorphic and thought to result in inter- individual...
متن کاملExpression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells
Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...
متن کاملAntibodies as a probe in cytochrome P450 research.
Cytochrome P450 (P450) is the superfamily of enzymes responsible for biotransformation of endobiotics and xenobiotics. However, their large isoform multiplicity, inducibility, diverse structure, widespread distribution, polymorphic expression, and broad overlapping substrate specificity make it difficult to measure the precise role of each individual P450 to the metabolism of drugs (or carcinog...
متن کاملGenetic polymorphism of cytochrome P450 and methods for its determination.
The majority of human P450 dependent drug metabolism is carried out by polymorphic enzymes which can alter plasma concentration of the pharmacological active substance followed by an enhanced or suppressed pharmacological effect. The response of individual patients to drugs can be affected by variations in DNA sequence mainly by single nucleotide polymorphisms (SNPs). Knowledge of functionally ...
متن کاملPolymorphic metabolism by functional alterations of human cytochrome P450 enzymes.
The study of cytochrome P450 pharmacogenomics is of particular interest because of its promise in the development of rational means to optimize drug therapy with respect to patient's genotype to ensure maximum efficacy with minimal adverse effects. Drug metabolizing P450 enzymes are polymorphic and are the main phase I enzymes responsible for the metabolism of clinical drugs. Therefore, polymor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 29 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2001